

NAVAL

POSTGRADUATE
SCHOOL

MONTEREY, CALIFORNIA

THESIS

Approved for public release; distribution is unlimited

MVC FOR CONTENT MANAGEMENT ON THE CLOUD

by

Crystal A. McGruder

September 2011

 Thesis Advisor: Doron Drusinsky
 Co-Advisor: Man-Tak Shing

THIS PAGE INTENTIONALLY LEFT BLANK

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
September 2011

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE MVC for Content Management on the Cloud 5. FUNDING NUMBERS
 6. AUTHOR(S) Crystal A. McGruder

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)
N/A

10. SPONSORING/MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy
or position of the Department of Defense or the U.S. Government. IRB Protocol number _______N/A_________.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Cloud computing portrays a new model for providing IT services over the Internet. In cloud computing, resources are
accessed from the Internet through web-based tools. Although cloud computing offers reduced cost, increased
storage, high automation, flexibility, mobility, and the ability of IT to shift focus, there are other concerns—such as
the management, organization and structure of content on the cloud—that large organizations should consider before
migrating to the cloud. This thesis presents an overview of Model View Controller (MVC) architectural pattern and
describes how the pattern can be applied to the cloud for content management. The MVC architecture is proposed in
this thesis because it divides the aspects of a document into three parts: a model, view and controller, thus allowing
elasticity, portability, and interoperability for document objects. The thesis presents a case study to illustrate how
MVC can be used to facilitate document collaboration and content management in the cloud, and examines existing
document standards to assess their readiness in supporting the MVC document architecture.
14. SUBJECT TERMS Cloud Computing, Model View Controller, Open Office XML,
OpenDocument Format, Rich Text Format

15. NUMBER OF
PAGES

75

16. PRICE CODE

17. SECURITY
CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY
CLASSIFICATION OF THIS
PAGE

Unclassified

19. SECURITY
CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UU

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

THIS PAGE INTENTIONALLY LEFT BLANK

 i

Approved for public release; distribution is unlimited

MVC FOR CONTENT MANAGEMENT ON THE CLOUD

Crystal A. McGruder
Civilian, United States Navy

B.S., University of Arkansas at Pine Bluff, 2006

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN SOFTWARE ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 2011

Author: Crystal A. McGruder

Approved by: Doron Drusinsky
Thesis Advisor

Man-Tak Shing
Co-Advisor

Peter Denning
Chair, Department of Computer Science

 ii

THIS PAGE INTENTIONALLY LEFT BLANK

 iii

ABSTRACT

Cloud computing portrays a new model for providing IT services over the Internet. In

cloud computing, resources are accessed from the Internet through web-based tools.

Although cloud computing offers reduced cost, increased storage, high automation,

flexibility, mobility, and the ability of IT to shift focus, there are other concerns—such as

the management, organization and structure of content on the cloud—that large

organizations should consider before migrating to the cloud.

This thesis presents an overview of Model View Controller (MVC) architectural

pattern and describes how the pattern can be applied to the cloud for content

management. The MVC architecture is proposed in this thesis because it divides the

aspects of a document into three parts: a model, view, and controller, thus allowing

elasticity, portability, and interoperability for document objects. The thesis presents a

case study to illustrate how MVC can be used to facilitate document collaboration and

content management in the cloud, and examines existing document standards to assess

their readiness in supporting the MVC document architecture.

 iv

THIS PAGE INTENTIONALLY LEFT BLANK

 v

TABLE OF CONTENTS

I. CLOUD COMPUTING ...1
A. BACKGROUND ..1
B. THESIS OBJECTIVES ...3
C. ORGANIZATION OF THESIS ...3

II. MODEL VIEW CONTROLLER ...5
A. BACKGROUND ..5
B. MODEL VIEW CONTROLLER ARCHITECTURE OVERVIEW6

1. Model View Controller Distinct Elements ...9
a. View Element...10
b. Controller Element ..11
c. Model Element ..11

2. Class Diagram for the MVC Pattern ...13
C. EXAMPLES OF MVC APPLICATIONS ...13

1. Synchronized Disaster Response Version 1.013
2. Information Service System of Cooperative Marketing of

Tobacco Industry ...17
3. Operating Auditing System ...20
4. Desktop Applications with Web Services ..21

III. APPLYING MVC TO CONTENT MANAGEMENT ON THE CLOUD25
A. BENEFITS FOR APPLYING MVC TO CONTENT IN THE CLOUD ..26
B. USE CASE ANALYSIS ...26

1. Work Request Report Collaboration ...27
a. Actors ...28
b. Use Cases and Scenarios ..28
c. New Requirement for Work Request Document33

2. Update of the Organization Logo ...36
C. REQUIREMENTS OF THE WORK REQUEST DOCUMENTS37

1. Functional Requirements ..37
2. Non-Functional Requirements ..40

D. CLOUD DOCUMENTS CLASS DIAGRAM ...40
1. Work Request Class Diagram...40
2. Work Request Package Diagram ...41

IV. DOCUMENT STANDARDS IN SUPPORT OF MVC ..43
A. EXISITNG OPEN DOCUMENT STANDARDS ..43

1. Office Open XML ..43
2. ODF ...45
3. Rich Text Format ...47

B. EVALUATION OF EXISTING STANDARDS ..47
1. Evaluation of OOXML ..47
2. Evaluation of ODF ...48
3. Evaluation of RTF ...50

 vi

C. SUMMARY OF FINDINGS ...52

V. CONCLUSION ..53
A. THESIS SUMMARY ...53
B. FUTURE WORK ...53

LIST OF REFERENCES ..55

INITIAL DISTRIBUTION LIST ...59

 vii

LIST OF FIGURES

Figure 1. Cloud Computing Deployment Models (From Shum, 2009)2
Figure 2. Traditional MVC Mapping. (From Joomla, 2010) ..6
Figure 3. Original MVC Pattern. (From Walther, 2008) ...6
Figure 4. MVC Architecture Overview “A.” (After Cochran, 2005)7
Figure 5. MVC Architecture Overview “B.” (After Cochran, 2005)8
Figure 6. MVC Architecture Overview “C.” (After Cochran, 2005)9
Figure 7. MVC Architecture of Component Relationship (From Gérardin, 2009)10
Figure 8. Transform View (From Fowler 2003) ...11
Figure 9. Behavior of the Passive Model (From MSDN) ...12
Figure 10. Behavior of the Active Model(From MSDN) ..12
Figure 11. MVC Class Diagram (From Webworld, n.d.) ..13
Figure 12. SDR Architecture (From Kelly & Mazyck, 2010) ...14
Figure 13. Data Model (From Kelly & Mazyck, 2010 ..15
Figure 14. Template Engine (From Kelly & Mazyck, 2010) ..15
Figure 15. Controller (From Kelly & Mazyck, 2010) ..16
Figure 16. Event Handlers (From Kelly & Mazyck, 2010) ..17
Figure 17. System Architecture based on SaaS pattern (From Bin, Liwei, & Yong,

2009) ..18
Figure 18. System Design Based the Improved MVC Pattern (From Bin, Liwei, &

Yong, 2009) ...19
Figure 19. Logical Structure (From Zhengquan & Chengjun, 2010)20
Figure 20. MVC Architecture (From Qiu) ..22
Figure 21. MVC Approach (From Qiu) ..22
Figure 22. Model, View, and Controller Element in MS Documents25
Figure 23. Facilitates Management Department Document Use Case Diagram27
Figure 24. Wireframe of Customer Request Form ..29
Figure 25. Wireframe of PM Form ...30
Figure 26. Wireframe of Lead Form ...31
Figure 27. Wireframe of Financial Evaluation Form ..32
Figure 28. Responsibilities of Work Request User ...34
Figure 29. FundingApp Fields...35
Figure 30. New Responisibilties of Work Request User...35
Figure 31. Comparsion of Old and New Document ..36
Figure 32. The View Element of the 500 Page Report ...37
Figure 33. Facilities Management Department Documents Class Diagram41
Figure 34. Work Request Report Package Diagram ...42
Figure 35. Components of OOXML (From Vugt, 2007) ..44
Figure 36. Text document (From O’Reilly & Associates, 2005)45
Figure 37. Listing of Unzipped Text Document (From O’Reilly & Associates, Inc,

2005) ..46

 viii

THIS PAGE INTENTIONALLY LEFT BLANK

 ix

LIST OF TABLES

Table 1. Key Features and Benefits of ODF (From OASIS ODF Adoption TC,
2006) ..49

 x

THIS PAGE INTENTIONALLY LEFT BLANK

 xi

ACKNOWLEDGMENTS

First of all, I would like to thank God for bringing me through this interesting

experience. He answered all my prayers and encouraged me when I felt like I wanted to

give up. God has been so amazing to me and I want to dedicate not only my life but this

thesis to HIM. I would be nothing without HIM and HIS son Jesus. Thank YOU, Lord,

for being so faithful to me!

Next, I would like to thank my loving husband, Robert. He is truly the best! I am

so grateful to have him in my life. He has been so patient with me and I love him for

that. Robert spent many nights listening to me read and type on my laptop. There were

days when he would cook dinner and clean the house for me so that I could focus on my

research. I feel like he wrote this thesis with me. He has supported me not only with this

thesis but throughout this whole program. I am the luckiest woman in the world because I

have him.

Next, I also would like to thank management for believing in me, supporting me

and giving me the opportunity to accomplish my goals. And I want to thank two of my

“special co-workers” for all of their encouragement. Their love and inspirations inspired

me to try harder. They listened to ALL of my complaints and gave me wonderful advice.

I appreciate them very much.

And finally, I MUST thank two of the BEST professors at NPS, Professor

Drusinsky and Professor Shing. I am so grateful for ALL their help! They both gave me

the direction and guidance that I need to reach this difficult goal. I am truly blessed to

have them as my thesis and co-thesis advisors. Their incredible knowledge assisted me

throughout this whole process. There was a time that I felt frustrated about my slow

progression in my thesis research and Professor Drusinsky sent me a very encouraging e-

mail; whenever I felt like I giving up, I would read his e-mail and it gave me that extra

push. I also remember when I felt like I did not have anything else to contribute to this

thesis and Professor Shing gave me a list of other helpful topics and questions to

research. Thank you BOTH for everything!

 xii

THIS PAGE INTENTIONALLY LEFT BLANK

 1

I. CLOUD COMPUTING

A. BACKGROUND

In the past, a drawing of network was illustrated as a cloud. The cloud was used

as a metaphor for the Internet; when combining cloud with computing, the definition

expands. The term cloud computing was first used in a lecture in 1997 by Ramnath

Chellappa, an Associate Professor in the Information Systems & Operations

Management. Chellappa defined cloud computing as the “new computing paradigm

where the boundaries of computing will be determined by economic rationale instead of

technical limits alone.” In 1999, Salesforce.com was the first to move into cloud

computing, next was Amazon through Amazon Web Service in 2002, then Google Docs

in 2006.

Cloud computing is the fifth generation of computing that provides five essential

characteristics (on-demand self-services, resource pooling, measured services, board

network, and rapid elasticity), three service models (Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS)), and four deployment

models (private cloud, community cloud, public cloud, and hybrid cloud). It is a model

for enabling convenient, on-demand network access to a shared pool of configurable

computing resources (e.g., networks, servers, storage, applications, and services) that can

be rapidly provisioned and released with minimal management effort or service provider

interaction (Mell & Tim, 2009). Figure 1 gives examples of the three deployment models.

 2

Figure 1. Cloud Computing Deployment Models (From Shum, 2009)

Cloud computing offers many benefits to organizations such as Department of

Defense. When the Department of Defense prepares to migrate to the cloud, it should

consider how the content in its documents would be managed over time. Managing

content in documents that requires logic can make documents difficult to manage and

keep organized. For an example, a company has tax report documents that include state

taxes and county fees; when these tax rates are deeply embedded in each document, it

makes the content of these documents very difficult to manage because users are required

to update these documents whenever the state or county changes its rates. Managing

content in these documents can become cumbersome.

The difficulty of the managing content in documents is decreased when the Model

View Controller (MVC) approach is applied to separate the model, view and controller

aspects of a document. For instance, applying the MVC approach to the tax report

documents will separate the controller (tax rates calculation) from the view (display) of

the document; now the user only need to update the rates via the controller whenever they

are changed, and the document will automatically update its display to show the correct

state taxes and county fees throughout the document.

 3

B. THESIS OBJECTIVES

The objective of this thesis is to investigate how the Model View Controller

(MVC) architecture can be used to address the content management risk in cloud

computing. In this thesis, we will introduce the MVC pattern and illustrate how it

pertains to the content management, give an overview of the MVC architecture, discuss

the distinct elements of MVC, provide a class diagram for the MVC pattern, and discuss

the benefits of applying MVC to content management in the cloud. There are four

examples of MVC applications presented in this thesis to illustrate how MVC has already

been applied to other applications. We will also present a case study to illustrate how

MVC can be used to facilitate document collaboration and content management in the

cloud. To give a detailed understanding of the cloud documents, a use case analysis,

requirements and class diagram are presented. There exist some document standards that

can potentially be used to apply MVC to a document; we will examine three different

document standards and evaluate their readiness to support MVC.

C. ORGANIZATION OF THESIS

The remainder of this thesis is organized as follows:

Chapter II provides an overview the MVC architectural pattern. It presents the

three elements of the MVC pattern and explains how the three elements work together,

and provides examples to show how MVC was used in existing applications in the cloud.

Chapter III discusses the benefits of applying MVC to content management in the

cloud, describes a use case to illustrate how MVC can be used to manage cloud

documents contents, and presents the requirements for a MVC document architecture.

Chapter IV reviews existing document standards and provides an assessment of

their readiness in supporting the MVC document architecture.

Chapter V summarizes the thesis and discusses future work.

 4

THIS PAGE INTENTIONALLY LEFT BLANK

 5

II. MODEL VIEW CONTROLLER

A. BACKGROUND

The Model View Controller (MVC) is a widely supported design pattern invented

in 1979 at the XEROX Palo Alto Research Center by Trgve Reenskaug. Reenskaug

summarizes his inspiration:

One of the great inventions of the Smalltalk group at Xerox Palo Alto
Research Center (PARC) in the seventies was the idea that objects can be
made visible on the computer screen so that the user can see and
manipulate them directly. This makes the abstract computer data appear
concrete and the underlying object model visible. The user can easily
adjust his mental model to this computer model and operate on it with
confidence. The well-designed direct manipulation object interface is
intuitively obvious and therefore easy to learn for the uninitiated. This
strength of the direct manipulation object model is also its main weakness.
Each object can only appear once on the screen and must always be
presented in the same way to preserve the illusion of concreteness. This is
insufficient for large and complex models where we need to view objects
in different ways. (Pawson, 2004)

The original name was the “Thing Model View Editor pattern,” then Reenskaug

changed the name to “Model View Controller Pattern” (Walther, 2008). He sought after

solving the problem of representing complex real-world systems such as “the design and

construction of a major bridge, a power station or an off-shore oil production platform”

(Walther, 2008).

In 1980s, MVC made its first appearance to the public in Smalltalk-80. Jim

Althoff first implemented MVC for Smalltalk–80. Smalltalk is an object-oriented

programming language and MVC was the major feature. MVC was developed in

conjunction with Smalltalk. Originally, the MVC and Smalltalk-80 pattern was developed

for the Dynabook Project (a portable personal information management tool) by Alan

Kay (Sasine, 1995).

The objective of MVC is to develop applications in a modular way, support in the

development of graphical user interface (GUI), and use object sharing to endorse

 6

software reusability. Initially, MVC was developed to map the traditional input,

processing, output roles into the GUI realm (Joomla, 2010).

Figure 2. Traditional MVC Mapping. (From Joomla, 2010)

B. MODEL VIEW CONTROLLER ARCHITECTURE OVERVIEW

In the “Original MVC Pattern” (Figure 3), the view is not directly updated from

the model. If the model is altered, an event raises and then the view is changed in

response of the event. The controller modifies the model, and since the view is observing

the model, the view gets updated (Walther, 2008).

Figure 3. Original MVC Pattern. (From Walther, 2008)

 7

MVC is normally associated with object-oriented frameworks; however, MVC is

an architecture that can be implemented even without an object-oriented language or a

specific class hierarchy (Wikipedia MVC: The Free Encyclopedia). The goal of the MVC

architecture is to split the business logic and application data from the presentation data

thus decreasing the complicated architectural design and increasing flexibility and

maintainability of code. Matthew Cochran developed the following three diagrams to

give an understanding of the MVC architecture. He demonstrates how the three elements

work together and also how the end user interacts with a MVC based application.

Figure 4. MVC Architecture Overview “A.” (After Cochran, 2005)

Notice, in Figure 4, the controller makes a request to the model and updates the

view. What happens if the end user wants to update the model using the view? See the

next diagram.

 8

Figure 5. MVC Architecture Overview “B.” (After Cochran, 2005)

Notice, in Figure 5, the end user makes a request using the control, through the

view to update the model. Now, what happens if the view does not have the essential data

to display the present state of the model?

 9

Figure 6. MVC Architecture Overview “C.” (After Cochran, 2005)

Notice, in Figure 6, the view is enabled to get the state of the model in order to

know what is needed to be displayed from the model. The end user uses the view to

interact with the model. Typically, a request is started from the view then handled by the

control; the control will then ask the model to change and make any necessary changes to

the view (Cochran, 2005).

1. Model View Controller Distinct Elements

The Model View Controller architecture consists of three distinct elements:

model, view, and controller. These distinct elements are separated to support maintaining

and reusing code. Separation of these elements is used in applications that need to

maintain multiple views of the same data. Figure 7 is a diagram that illustrates the

relationships of the distinct elements.

 10

Figure 7. MVC Architecture of Component Relationship (From Gérardin, 2009)

a. View Element

Views control the display of data by displaying all or a fraction of the data

and specifying how this data should be presented. Basically, it presents the data to the

user. The view is an illustration of its model and data is received from the model by

asking questions. The responsibilities of the view are to manage a section of the display

and to keep the display consistent with the state of the model.

There are two types of views: Template View and Transform View. The

template view is used to separate the HTML from the code, which uses a template to

implement the view of the MVC. This template is typically a HTML document with

embedded markers which are changed, manipulated, or evaluated by means of a template

engine API to produce an output document (Battlez, 2007). The Transform View gets the

model data one element at a time and transforms it into an end-user representation like

HTML. The major difference between the two views is that a Template View is

 11

organized around the output while a Transform view is organized around separate

transforms for each kind of input element (Fowler, 2003).

Figure 8. Transform View (From Fowler 2003)

b. Controller Element

The events affected by the model or view are handled by the controller.

The controllers operates by accepting input from the user, then, based on the input,

instructs the model and viewport to perform actions. The user and system is linked

together through the controller. Basically, the controller handles user’s input such as

keystrokes, mouse clicks, and mouse movements as events. Sometimes the controller can

be seen as the mediator between the view and the model; however, this is NOT the case

because it does not sit between the model and view.

c. Model Element

The model represents the core functionality by managing the behavior and

data of the application, providing requests with information about current state, and

replying to instructions to alter the state. The model can be a single object or multiple

objects. It is the data and business logic utilized in operating the data in an application in

which making it more than just a database. For instance, not only does the model contain

data but it also encapsulates methods to accessing and manipulating the data (data access

layer).

The model element is also known as the domain logic. It can be built

without any awareness of the views and controllers. This will allow the model to be

independent of the view and the controller. However, it supplies services and data to the

other elements of the MVC. The model is the core element of MVC.

 12

There are two types of models: passive model and active model. In the

passive model, a controller manipulates the model entirely. The web MVC commonly

uses passive model. HTTP protocol is an example of passive model. In the passive

model, first the controller modifies the model then informs the view that the model has

changed and should be refreshed (MSDN).

Figure 9. Behavior of the Passive Model (From MSDN)

The active model is the complete opposite of the passive model. In the

active model, the model alters state without the controller’s participation. This usually

happens when other sources are changing the data and the changes must be reflected in

the views (MSDN).

Figure 10. Behavior of the Active Model(From MSDN)

 13

A passive model can be turn into an active model by using an adapter to

add change propagation or other active model features to passive model objects (Battlez,

2007).

2. Class Diagram for the MVC Pattern

Usually, the model passes the data to controller then the controller passes that data

to views. After receiving the data from the controller, the view will create a specific view

to the end user. The controller helps the view to be apart from the model (Webworld).

Below is a class diagram of a typical MVC application.

Figure 11. MVC Class Diagram (From Webworld, n.d.)

C. EXAMPLES OF MVC APPLICATIONS

1. Synchronized Disaster Response Version 1.0

In Shawn Kelly’s thesis, he discusses how MVC is used in the Google Apps

Framework. An application called Synchronized Disaster Response version 1.0 (SDR-1)

is proposed in the thesis report. SDR-1 is a system designed to faster real-time

information sharing openly and transparently across all levels of the public and private

sectors, resulting in efficient use of resources during national disasters (Kelly & Mazyck,

 14

2010). The application is divided into three distinct elements model, view, and controller.

In the SDR-1 architecture, each distinct element is deployed to different physical servers

in the cloud computing environment.

Figure 12. SDR Architecture (From Kelly & Mazyck, 2010)

The model consists of a set of persistent data in a datastore, which is a complex

distributed data storage based on Google Bigtable. The Google Bigtable is a distributed,

persistent, multi-dimensional sorted map that allows you to store strings (or un-

interpreted array of bytes) indexed by row key, column key and timestamp. Seven classes

are proposed in the SDR-1 application:

a. User Class – users across the Google ecosystem

b. Profile Class – additional user information

c. Organization Class – public & private organizations

d. Location Class – geographic position and its associated resources

e. Resource Class – information describing resources in abstract terms

f. Disaster Class – geographical area designated by FEMA/USSNORTHCOM
after a disaster

g. Search Class – set of search criteria

 15

Figure 13. Data Model (From Kelly & Mazyck, 2010

The view is a set of HTML templates, CSS, and JavaScript used to define the look

of the SDR-1 application. A template engine is also used in this application to “merge

data retrieved from the model with appropriate HTML templates to generate a view that

can be returned to the user.” The view’s structure is dependent upon HTML templates.

The templates describe content shown to the user via hypertext markup language and

enables division of content into a hierarchy of extendable and reusable templates.

Figure 14. Template Engine (From Kelly & Mazyck, 2010)

 16

The controller for the SDR-1 application has all of the business logic. The

controller consists of configuration file and request handlers (Figure 15).

Figure 15. Controller (From Kelly & Mazyck, 2010)

The configuration file, app.yaml, “provides a route to the appropriate request

handler based on URL paths included in a request.” The incoming HTTP requests for

different URLs in application are dealt with by the request handlers in main.py. SDR-1

application contains Main Handler that extends a request handler, as shown in Figure 16.

 17

Figure 16. Event Handlers (From Kelly & Mazyck, 2010)

2. Information Service System of Cooperative Marketing of Tobacco
Industry

Wang Bin, Bao Liwei, and Ye Yong did a case study on a system based on the

SaaS model. This system is an information service system for cooperative marketing of

tobacco industry. The system is divided into modules:

a. Statistical statement

b. Comprehensive inquiry

c. Product demonstrations

d. Market analysis

e. Dynamic monitoring

 18

In this information service system for cooperative marketing of tobacco industry,

the user can access his or her data storage organizations and give system access to other

end-users. The user’s configuration carries out the SaaS applications. Some users require

more comprehensive information, such as the users from State Tobacco Monopoly

Administration, which requires industry-wide marketing information for cigarette

manufacturers and commercial enterprise to carry out the macro decision-making (Bin,

Liwei, & Yong, 2009). Users of various cigarette manufacturers may need to view their

products in the country’s situation of production, sale and inventory. Notice, in Figure 17,

the information service system for cooperative marketing of tobacco industry based on

SaaS is in the maturity Ⅳ SaaS (Bin, Liwei, & Yong, 2009).

Figure 17. System Architecture based on SaaS pattern (From Bin, Liwei, & Yong, 2009)

 19

The information service system for cooperative marketing of tobacco industry has

the following features:

a. Different interface

b. Data structure

c. Business logic for different user

Figure 18 illustrates how the MVC pattern is used in this system.

Figure 18. System Design Based the Improved MVC Pattern (From Bin, Liwei, & Yong,
2009)

The implementation of this design provides various business logic operations for

multiple users to share, which is achieved by the model. In this system, the model layer,

the control layer and the data management layer are all stored and executed on a SaaS

server (Bin, Liwei, & Yong, 2009).

 20

3. Operating Auditing System

In the paper, “MVC model based on high-performance computing operating audit

system,” Zhengquan Zhang and Chengjun Xu presented a job-auditing system that is

based on the MVC architecture operating systems and applications Java 2 Platform

Enterprise Edition (J2EE) architecture. Using the web, this application gives users the

ability to submit job applications; allowing this High Performance Computing Center

(HPC) to review the contents of the user’s job to guard against malicious code in order to

improve the safety and security of HPC (Zhengquan & Chengjun, 2010).

The operating auditing system is based on J2EE three-tier architecture involving

JSP, EJB and Servlets, where the Servlet component corresponds to the MVC in the

controller part, JSP and Browser corresponds to the view part, while the logic of Bean,

and the value of the object correspond in the model part (Zhengquan & Chengjun, 2010).

Because the J2EE system is built on the MVC design concept, it encourages the

separation of the business logic from the presentation layer.

Figure 19. Logical Structure (From Zhengquan & Chengjun, 2010)

The J2EE system is inspired by the MVC design pattern. Zhang and Xu identified

the following as the advantages of applying MVC:

a. “A model can be run at the same time create and use multiple views.

Change - dissemination mechanisms to ensure that all relevant changes in

 21

the view model data in a timely manner so that all the associated view and

controller behavior to achieve synchronization.”

b. “View and the controller can Plug-in nature, allowing replacement of the

view and controller objects, and can dynamically on demand open or

closed, even when running the object during the replacement of.”

c. “Model portability. Because the model is independent of the view, so a

model can be independently migrated to new platforms work. The only

thing that needs to be done on the new platform, a new view and

controller changes.”

d. “A potential framework. You can build applications based on this model

framework, not only used in the design of interface design.”

4. Desktop Applications with Web Services

In the report, “Building Desktop Applications with Web Services in a Message-

based MVC Paradigm,” Xiaohong Qiu describes an approach to building desktop

application with Web Services in an explicit message-based MVC paradigm. He

integrates a publish messaging middleware with a method-based desktop application,

Scalable Vector Graphics (SVG) browser (a Microsoft PowerPoint like client

application), thus providing desktop applications with Web Service style interfaces and

making them universally accessible from different client platforms: Windows, Linux,

MacOS, PalmOS and other customized ones (Qiu).

Figure 20 illustrates implementation of MVC architecture. Qiu examines a

“universal modular design with messaging linkage service model that converge desktop

applications, Web applications, and Internet collaboration to achieve reusability,

scalability, interoperability and pervasive accessibility,” and proposes an explicit

message-based MVC (MMVC) paradigm.

 22

Figure 20. MVC Architecture (From Qiu)

Figure 21 is a general MVC approach. MMVC a different approach with MVC

being utilized systematically but with message based interactions, between the model and

the view components (Qiu). Qiu believes this approach will give sufficient performance

for desktop applications.

Figure 21. MVC Approach (From Qiu)

 23

Qiu examines an existing system (Batik SVG browser from Apach). Batik is a

Java-based toolkit for applications or applets that want to use images in the SVG format

for various purposes, such as display, generation or manipulation (Apache Software

Foundation, 2010). Qiu transforms the Batik SVG browser architecture from a method-

based desktop application to a message-based one. The message-based architecture

permits one to build desktop applications as web services and so join traditional desktop

and web service plus portal approaches; thus making collaborative applications

straightforward to build (Qiu). The separation of the model and view enables supportive

various client devices and operating systems. Qiu’s strategy allocates long distance

linkage between the model and view. Qui uses a similar messaging infrastructure used to

support large Grid applications. His approach can be used for interactive applications

when model and view are nearby and allow collaboration and traditional web portal use

for remote access (Qiu).The prototype exemplified by Qiu demonstrates how a message-

based MVC architecture can generate a prevailing application paradigm appropriate for

SVG.

 24

THIS PAGE INTENTIONALLY LEFT BLANK

 25

III. APPLYING MVC TO CONTENT MANAGEMENT ON THE
CLOUD

Cloud computing provides large organizations the ability to process, store, and

share data anytime and anywhere. Content management on the cloud refers to the

organization and structure of data on the cloud and the operations of data. Since today’s

large organizations store, present and share most data in the form of documents, efficient

and effective management of document contents will have significant impact on the

organizations’ ability to use cloud computing to support new workflow and improve their

business processes.

Like software, the content of a document are made up of three kinds of elements –

model, view and controller. For an example, the model element is the raw data, the view

element is the rendering of information (color, positioning and font) and the controller

element is business logic (county taxes) (Drusinsky, 2011).

Figure 22. Model, View, and Controller Element in MS Documents

However, all distinct elements of MVC are packaged into a single file in today’s

documents such as the Word, Excel, and PowerPoint Microsoft Office documents,

making them very complex, inflexible, and very difficult to manage. Introducing MVC

into document processing, dividing the model, view, and controller elements of a

document, will improve the document’s reusability, flexibility, and reduce

application/platform dependency.

 Raw Data

(Model Element)

Rendering of data
(Color)
(View Element)

Business Logic (State
Taxes)
(Controller Element)

 26

A. BENEFITS FOR APPLYING MVC TO CONTENT IN THE CLOUD

There are many benefits when applying the MVC pattern to manage document

content, most of which stem from MVC’s enforcement of separation of document

elements.

MVC reduces the complexity of the document structure and accommodates

change in documents. Improvements to the model, view or controller can be implemented

easily. Because MVC enforces separation of elements in a document, users can easily

update the model, view, or controller without affecting the whole document. The

separation of the document content into smaller modules of model and view also allows

finer-grain access control, which facilitate document collaboration by multiple users in

the cloud.

MVC promotes reusability. The controller glues together the view and model

elements in order to fulfill a request given by the end user. Presented with a number of

reusable building blocks in the model and the view, the controller picks and chooses

which blocks are needed to handle specific processing and display requirements (Kotek,

2002).

By keeping the view and model elements separated, MVC supports effortless

modifications of multiple views of a single document and facilitates the integration of

data in different documents (i.e., different views) without the need to physically

duplicating them as in today’s documents. Moreover, it also enables the generation of

complex views via embedded reader-sensitive view logics (e.g., the automatic hiding of

sensitive information from unauthorized readers). This separation endorses flexibility.

Incorporating custom business logic in documents allows automated document-

level integration and updates of document content, thus improves the accuracy and

robustness of the document.

B. USE CASE ANALYSIS

The naval base Facilities Management Department is starting to migrate its

documents to the cloud. In order to have better content management, the developers of

 27

these new cloud documents will have to update or redesign the cloud documents before

the migration. This section presents two use case analyses to identify the requirements of

the cloud documents.

1. Work Request Report Collaboration

This use case analysis focuses on the creation and approval of work request

reports. It consists of seven use cases: Create Work Request, Project Manager

Evaluation, Lead Evaluation, Financial Evaluation, Estimated Rates, Actual Rates, and

View Facilitates Management Department Document. In the Work Request report

workflow, users must be able to create new work request and the Project Manager, Lead,

and Financial must have to ability to evaluate each form and add, edit, and delete rates.

The Facilities Management Department document is read-only for ALL employees. The

use case diagram below highlights the seven use cases and the actors involved.

Figure 23. Facilitates Management Department Document Use Case Diagram

 28

a. Actors

The actors below are the entities that are use the reporting system:

a. Customer – This actor initiates the work request.

b. Project Manager – This actor manages the work request and completes the

initial estimated funding of the work request.

c. Lead – This actor overseas the work requests to ensure contractors meet

the deadline and adequate funding is available for contractors to complete

the work.

d. Financial – This actor enters all actual funding and dates at the end of the

project.

e. Naval Base Employee – This actor can only view the Facilities

Management Department work request documents.

b. Use Cases and Scenarios

a. Create Work Request

i. Actor: Customer

ii. Precondition: The customer has a typical engineering or

construction project.

iii. Scenario: The customer opens the work request template, and

inputs the following fields: Customer Name, Customer Phone,

Customer Code, Customer Email, Priority, Location, Building,

Department and Description of Work Request. The customer saves

the document to the department’s cloud computing document-

sharing site.

iv. Alternative Scenario: NA

v. Wireframe of Customer Form:

 29

Figure 24. Wireframe of Customer Request Form

b. Project Manager Evaluation

i. Actor: Project Manager

ii. Precondition: A request has been submitted by the customer.

iii. Scenario: The Project Manager (PM) evaluates the work request

report to ensure that the data is correct and ensures that the request

is an actual engineering or construction project. The manager then

enters data into ALL the required fields: Request Work Start,

Request Completion Date, Title, Justification, Supplier POC,

Supplier Phone, Supplier Fax, PM Name, PM Phone, Approval,

Execution Method, Estimation Cost fields. The PM approves the

report and saves for review by the Lead.

iv. Alternative Scenario: If the request is disapproved or is not an

actual engineering or construction project, the Project Manager

removes the work request from the department’s site and contacts

the customer.

v. Wireframe of PM Form:

 30

Figure 25. Wireframe of PM Form

c. Lead Evaluation

i. Actor: Lead

ii. Precondition: The PM has approved the request and entered data in

every cost estimation field.

iii. Scenario: The Lead enters in the appropriate contractors for the

requests and ensures that there is adequate funding for contractors

to complete the work. The Lead will also enter in the following:

Fund Type and Fund Sub-Type.

iv. Alternative Scenario: If there is not enough funding, the Lead will

adjust the estimated cost fields.

 31

v. Wireframe of Lead Form:

Figure 26. Wireframe of Lead Form

d. Financial Evaluation

i. Actor: Financial

ii. Precondition: The contractors and funding is entered.

iii. Scenario: The Financial department enters the actual costs.

iv. Alternative Scenario: NA

v. Wireframe of Financial Evaluation Form:

 32

Figure 27. Wireframe of Financial Evaluation Form

e. Estimated Rates

i. Actor: PM, Lead

ii. Precondition: The Execution Method, Fund Type, Fund Sub-Type

and Department have been entered in the request form.

iii. Scenario: The PM or Lead enters the estimations for: Labor Hours,

Material, Contract, and Design. The Labor Rate and SIOH Rate

depend on the Execution Method, Fund Type, and Fund Sub-Type.

 33

The Total Estimation equals to the sum of Labor Rate, Material,

Contract, Design, and SIOH rate.

iv. Alternative Scenario: NA

f. Actual Rates

i. Actor: Financial

ii. Precondition: The Execution Method, Fund Type, Fund Sub-Type,

and Estimated cost have been entered in the request form.

iii. Scenario: Financial enters the actual numbers for: Labor Hours,

Material, Contract, and Design. The Labor Rate and SIOH Rate

depend on the Execution Method, Fund Type, and Fund Sub-Type.

The Actual Total equals to the sum of Labor Rate, Material,

Contract, Design, and SIOH rate.

iv. Alternative Scenario: NA

g. View Facilitates Management Department Document

i. Actor: Naval Base Employees

ii. Precondition: NA

iii. Scenario: The user opens the document from the department’s site

and views the information.

iv. Alternative Scenario: NA

c. New Requirement for Work Request Document

Recently, a new requirement for the funding rates has been added to the

old work request reports. The funding rates are now based on the following new fields:

execution method, funding type, and funding sub-type of a project, where the execution

method is the method that will be used to execute the payment for the work request such

as: Bankcard, PSNS (Puget Sound Naval Shipyard), or SEABEES, and the funding type

and funding sub type are the type of funding used in the work request. The user has to

 34

look up the calculation for each execution method, funding type, and funding sub-type

field and apply this calculation to the funding rate.

Figure 28. Responsibilities of Work Request User

The new funding rates are deeply rooted in each report and affect six of

the seven use cases. All the actors involved need to manually compute and update the

funding rate whenever the execution method, funding type, or funding sub-type of a work

request changed, thus increasing the likelihood for errors and difficulties in maintaining

the content of the document. The brute force approach in computing funding rates

necessitates the Facilities Management Department to redesign these reports before

migrating them over to the cloud because the contents in this report have become difficult

to manage.

Applying the MVC concept to this report will ease the creation and use of

these reports, making them more flexible. The MVC will separate the controller (funding

rates business logic) from the model (contents) and view (user interface) of the report.

The funding rate logic will be stored in an application called FundingAPP.

 35

Figure 29. FundingApp Fields

Now, when a user creates a work request, he/she no longer has to worry about

calculating the funding rate because the FundingApp will automatically calculate the rate

depending on the execution method, funding type, and funding sub-type fields.

Figure 30. New Responisibilties of Work Request User

In Figure 30, notice the new responsibilities of the user when creating

work request. The user is only responsible for creating the work request report and the

FundingApp performs the logic and populates the funding rate field.

 36

Figure 31. Comparsion of Old and New Document

In the old document without the MVC approach, the user has more steps

in completing a work request report. In the new document with the MVC approach, the

user only has one step in completing a work request report because the business logic will

be done in the FundingApp. The above illustration only demonstrates the creation of a

work request by one user either the Project Manager, Lead, or Financial; however; the

use case analysis and requirements will divide a user into four groups: Customer, Project

Manager, Lead, and Financial. The use case analysis and requirements will provide more

detail about the different roles and responsibilities of each user and the different fields in

the work request form.

2. Update of the Organization Logo

The Facilities Management Department has also recently changed the logo in a

500 page Facilities Management Department document. In this document, the logos have

changed thus requiring the views of the document to change. Logos are throughout the

document; for instances, logos can be found in headers, footers, paragraphs, etc. Usually,

when updating logos/images the user will have to manually update each page containing

the out-dated logos/images to the new logos/images. Applying MVC concept to this

document can allow these logos to be easily changed using Open Office XML

(OOXML). When using OOXML to update the logos, the user only has to change the

logo in one place and Microsoft Word will do the rest if the work. OOXML separates

contents of a document into different folders. The media folder holds the images of a

document. The user will use this folder to replace ALL of the logos in this document. The

 37

only concern is the view of the document therefore the model and controller will stay the

same. When a document uses MVC, a single element can be updated or changed without

manipulating the other to elements.

Figure 32. The View Element of the 500 Page Report

C. REQUIREMENTS OF THE WORK REQUEST DOCUMENTS

Below lists all of the requirements and constraints of the Work Request cloud

documents.

1. Functional Requirements

a. A work request is a typical engineering or construction project created

by the customer.

b. A work request MUST be approved by a Project Manager.

The logo of the
Facilities document.

 38

c. The estimations funding fields are: Estimated Material, Estimated

Equipment, Estimated Contract, Estimated Design, Estimated Labor

Hours, Labor Rates, and SIOH Rates.

d. The actual funding fields are: Actual Material, Actual Equipment,

Actual Contract, Actual Design, Actual Labor Hours, Labor Rates, and

SIOH Rates.

e. The estimated total is the sum of Estimated Material, Estimated

Equipment, Estimated Contract, Estimated Design, Labor Rates, and

SIOH Rates.

f. The actual total is the sum of Actual Material, Actual Equipment,

Actual Contract, Actual Design, Labor Rates, and SIOH Rates.

g. The execution method should ONLY include the following data:

ACOE, Bankcard, DLA-SAIC, EMALL, GSA, HQ ASC, NAVFAC

SCAN, NAVSEA-EB, NFEC HI, NFECSW, PSNS, SEABEES and

Other

h. The funding type should ONLY include the following data: TBD,
BRAC, CIP (17), CIP (Dept), Direct, FSCC, MILCON,
 Overhead (17), Overhead (Dept), USCC and Other.

i. The funding sub-type should include only the following data: Code 10,

Code 20, Code 30, Code 40, Code 50, Code 60, Code 70, Other

j. The contracting companies should include: INDUS, BOSC, RNISH,

TRANE, and NBK Alarm Shop

k. The project type should include only the following data: Design,

Design/Build, Equipment, Study, Construction, Alterations

l. The calculations for work requests are the following:

i. If execution method is ACOE and funding type is equal to

BRAC, CIP (17), CIP (Dept), or Direct and funding sub-type is

equal to Code 10, Code 20, Code 30, Code 40, Code 50, Code

60, or Code 70 then SiOH Rate is %2.25

 39

1. Or, if execution method is DLA-SAIC and funding type

is equal to TBD, BRAC, CIP (17), CIP (Dept), Direct,

FSCC, MILCON, Overhead (17), Overhead (Dept),

USCC or Other and funding sub-type is equal to Code

10, Code 20, Code 30, Code 40, Code 50, Code 60, or

Code 70 then SiOH Rate is %2.25

2. Or, if execution method is DLA-SAIC and funding type

is equal to BRAC, CIP (17), CIP (Dept), or Direct and

funding sub-type is equal to Code 10, Code 20, Code

30, Code 40, Code 50, Code 60, or Code 70 then SiOH

Rate is %5.45

3. Or, if execution method is NAVSEA-EB and funding

type is equal to BRAC, CIP (17), CIP (Dept), or Direct

and funding sub-type is equal to Other then SiOH Rate

is %8.30

4. Or, if execution method is PSNS and funding type is

equal to BRAC, CIP (17), CIP (Dept), or Direct and

funding sub-type is equal to Code 10, Code 20, Code

30, Code 40, Code 50, Code 60, or Code 70 then SiOH

Rate is %12.85

5. Or, if execution method is PSNS and funding type is

equal to other and funding sub-type is equal to other

then SiOH Rate is %.054; else SiOH Rate is %1.

m. The work request template should include the following fields:

Customer Name, Customer Phone, Customer Code, POC Name, POC

Phone, POC Code, Priority, Location, Building, Department,

Description of Work Request, Request Work Start, Request

Completion Date, Title of Project, Justification, Supplier POC,

Supplier Phone, Supplier Fax, Project Manager Name, Project

 40

Manager Phone, Execution Method, Contracting Company, Project

Sub Type

n. A business logic application called FundingApp will automatically

calculate the rates for the user based on the execution method, funding

type and funding sub-type.

2. Non-Functional Requirements

a. The Facilities Management Department must have a cloud computing

document-sharing site.

b. Replace the old logo in the Facilitates Management Department

document with the new logo.

c. Separate the rates business logic from the data in the Work Request

report and place into a business application called FundingApp.

d. Documents are created in Microsoft Office 2007 or higher version.

D. CLOUD DOCUMENTS CLASS DIAGRAM

This section presents a class diagram and a package diagram for the Work

Request document. These diagrams will describe the structure of the documents by

showing the different objects and their relationship.

1. Work Request Class Diagram

The class diagram below shows that the Facilities Management Department uses

many documents, where a document can have one or many logos. It also shows the

concepts involved in the creation and evaluation of a work request, which is a kind of

Facilities Management Department documents. The class diagram also highlights the

responsibilities of the project manager, lead and financial.

 41

Figure 33. Facilities Management Department Documents Class Diagram

2. Work Request Package Diagram

The work request package diagram illustrates the separation of the work request

report into the MVC three elements: model, view and controller. The view package

includes the logo graphics and the work request report. The model package is the raw

data in the work request report. The controller package is the FundingApp of the work

request report that performs all calculations.

 42

Figure 34. Work Request Report Package Diagram

 43

IV. DOCUMENT STANDARDS IN SUPPORT OF MVC

In this chapter, we review three existing document standards and assess their

readiness in supporting the MVC document architecture.

A. EXISITNG OPEN DOCUMENT STANDARDS

1. Office Open XML

Microsoft Word, Excel, and PowerPoint 2007 have new file formats. These file

formats will reduce file size, improve security and reliability, and enhance integration

with external sources (Microsoft Corporation, 2011). Office Open XML (OOXML) is the

default target file format of Microsoft Office. OOXML uses an open standard, thereby

making the file formats accessible through a plurality of applications in which is

seemingly in concert with MVC pattern (Drusinsky, 2011).

According to Wikipedia, OOXML is a zipped XML-based file format for

representing spreadsheets, charts, presentations and word processing documents.

OOXML was standardized by Ecma (Wikipedia MVC). It is the new file format for

word-processing, presentations, and spreadsheet documents. The primary markup

language for each document is: WordprocessingML, PresentationML, and

SpreadsheetML. There are other markups in OOXML such as DrawingML and Custom

XML.

The Markup Compatibility is also a very important specification because it has

the capability for a document expressed in WordprocessingML, SpreadsheetML, or

PresentationML markup languages to facilitate interoperability between applications. The

diagram below is an overview of the layers of specification.

 44

Figure 35. Components of OOXML (From Vugt, 2007)

An OOXML document is a container with many parts. The container is typically

implemented as a ZIP file, and the parts can be viewed as files within the ZIP. Moreover,

one could also store the document parts in a database to maximize reuse (Vugt, 2007).

The structure inside the container is the Open Packing Convention (OPC). The OPC

provides a way to store multiple type of content (e.g., XML, images, and metadata) in a

container, such as a ZIP archive, to fully represent a document

The collection of components that comprise the document within in a ZIP file is

referred to as a package. Parts and relationship items are the two types of components. A

part is the same as a file in a package. Relationships are stored inside the parts of a

package. A package is implemented as a ZIP archive, with each component in a package

corresponding to an item in the archive (Madhva). Component pieces such as images,

fonts, and data are circulated to a document through a package. A package merges all the

pieces of a document into a single file.

 45

2. ODF

The Open Document Format Office application known as OpenDocument (ODF)

is an XML-based free open format for office documents such as spreadsheets, charts,

presentations and word-processing documents. Sun Microsystems developed the

specifications for ODF. The Organization for the Advancement of Structured Information

Standards (OASIS) standardized ODF. The most common ODF document filename

extensions are: .odt for word processing (text) documents, .ods for spreadsheets, .odp for

presentations, .odb databases, .odg for graphics, and .odf for formulae.

ODF offers the following: Long-term reuse of and access to data, no lock-in to

proprietary tools or undocumented formats, competitive data processing products,

reduced costs, increased reliability, platform independence and interoperability (Edstorm,

2005). The ODF is an idealized representation of a document’s structure allowing any

applications using ODF to implement new features or completely alter internal data

structures without requiring major changes to the file format (O’Reilly & Associates,

2005). Java Archive (JAR) format is used to store ODF files; it is a compressed ZIP file

with additional “manifest” file that has a list of contents of the archive.

Figure 36 shows a word processing document saved as ODF document

“firstdoc.odt.”

Figure 36. Text document (From O’Reilly & Associates, 2005)

 46

Figure 37. Listing of Unzipped Text Document (From O’Reilly & Associates, Inc, 2005)

Figure 37 shows the results of unzipping this file in Linux. The contents of the files are as
follows:

a. Mimetype: single line of text that provides MIME type for the text

document

b. Content.xml: content of the text document

c. Styles.xml: data about the content’s style to separate content from

presentation

d. Meta.xml: contains data such as the author, late revision, date, etc.

e. Settings.xml: contains data specific to the application

f. META-INF/manifest.xml: contains a list of other files in the JAR

g. Configurations2: contains configuration data

h. Pictures: contains all the images from the text document

ODF supports MVC because when documents are saved as ODF documents,

contents of the documents are saved into multiple flat files that allow users to edit/update

different files without affecting other files.

 47

3. Rich Text Format

Rich Text Format (RTF) is a document standard that enables encoding many

different text formatting properties, such as bold characters and typefaces, as well as

document format and structures (Indiana University, 2011). This method can be used to

transfer formatted text and graphics between applications. If you save a document in

RTF, it can be open in many word processors and other RTF-aware software packaging

while keeping of the formatting unchanged. RTF mostly involves the view element of

MVC. RFT allows portability of the view of a document. RTF uses the American

National Standards Institute (ANSI), PC-8, Macintosh, or IBM PC character set to

control the representation and formatting of a document, both on the screen and in print

(Microsoft MSDN, 2011).

The RTF writer is used by software to convert a formatted file to a RTF file. The

RTF reader is included when software converts a RTF file into a formatted file. The RTF

writer separates the application’s control information from the actual text and writes a

new file containing the text and the RTF groups associated with that text (Microsoft

MSDN, 2011).

RFT is supported by Microsoft Office. RTF is used throughout the Microsoft Office

System to perform functions such as opening documents into Word and Cutting and

Pasting content (Brown, 2009).

B. EVALUATION OF EXISTING STANDARDS

In this section, each existing standard identified above (OOXML, ODF and RTF)

is evaluated to access its readiness to support the MVC requirements.

1. Evaluation of OOXML

The new Microsoft Office Open XML Formats combine the power of the world’s

most widely used productivity programs with the integration capabilities enabled by

XML (Microsoft Corporation, 2005). In OOXML format files, data is stored

 48

independently which allows modularity. This file format also present improved reliability

and notably reduce file sizes. On the MSDN and Microsoft websites, the benefits of using

OOXML are identified as:

a. Compact files: Files are instantly compressed. This is done through the use
of zip-compression technology to store documents which will reduces the
disk space required to store files, and decreases the bandwidth needed to
send files via e-mail, over networks, and across the Internet (Microsoft
Corporation, 2011)

b. Improved damaged-file recovery: If a component in a file has been
damaged, OOXML will keep different data components in the file
separate from each other.

c. Better privacy and more control over personal information: “Documents
can be shared confidentially, because personally-identifiable and business-
sensitive information, such as author names, comments, tracked changes,
and file paths can be identified and removed by using Document
Inspector.”

d. Better integration and interoperability of business data: OOXML allows
anyone to use documents and license, royalty free. Customer-defined
XML schemas are supported to improve the existing Office document
types which will allow customers to unlock data in the current system and
use it in acquainted Office programs. The ability to save, load, and use the
document format in a wide variety of applications and tools means that we
have document interoperability in a way we have never seen before
(White, 2009).

e. Easier detection of documents that contain macros: Visual Basic for
Applications and XML macros allowed in files that are saved using the
“x” suffix.

f. Backwards Compatibility: The ability to convert binary documents to
Open XML with a high degree of fidelity means that companies who have
literally millions of documents can convert them, and ‘light up’ these
existing documents (White, 2009).

g. Programmability: To use OOXML all you need is a library allowing zip
files to be open and saved plus a XML parser/processor.

2. Evaluation of ODF

ODF is essential because it offers cost efficiency and manages the use of

documents. Tools that support ODF allow users to use many different vendors for their

content because ODF was designed to be vendor neutral. ODF is the only official

standard that meets the need of the government. For instance, the government’s

 49

documents must be available for many decades, and available to any citizen despite of the

equipment they utilize; ODF will fulfill this need.

ODF can be used by many different applications. Established standards (XHTML,

SVG, XSL, SMIL, XLink, XForms, MathML, and Dublin Core) are reused in ODF to

simplify transformations and increase interoperability. ODF files of different application

types (e.g., the word processor, spreadsheet) include the same set of XML files within the

ZIP packages (OASIS ODF Adoption TC, 2006).

In Table 1, the “OASIS ODF Adoption TC” team identifies the key features and

benefits of ODF.

Table 1. Key Features and Benefits of ODF (From OASIS ODF Adoption TC, 2006)

Feature Benefit

OASIS standard
Open, transparent specification process with multi-

vendor participation

Approved by ISO as ISO/IEC 26300 Well known and broadly accepted standard

ISO standard Relax-NG schema types

(ISO/IEC19757-2:2003)
Well known and broadly accepted standard

Supported by multiple applications

Choice between free, open-source and commercial

implementations including OpenOffice.org,

StarOffice, KOffice, IBM Workplace, Textmaker,

Abiword/Gnumeric, Google Docs & Spreadsheet,

and AjaxWrite.

Broad industry support

ODF guarantees long-term viability. The OASIS

ODF TC, the OASIS ODF Adoption TC, and the

ODF Alliance include members from Adobe, BBC,

Bristol City Council, Bull, Corel, EDS, EMC,

GNOME, IBM, Intel, KDE, MySQL AB, Novell,

Oracle, Red Hat, Software AG, Sun Microsystems,

and the City of Vienna. As of December 2006, the

ODF Alliance already has more than 350 members.

Shipping products since September 2005
ODF files can already be created and used today.

The first products with ODF support started

 50

shipping in September 2005.

Free open source “reference” implementations

ODF is supported by multiple free, opensource

office applications including OpenOffice.org,

KOffice and Abiword/Gnumeric. OpenOffice.org,

for example, is developed by a large community

including vendors like Sun Microsystems, Novell,

Intel, and Red Hat. Because the source code is

available, anyone can add support for additional

platforms.

ODF implementations available for all major

desktop platforms

Applications with ODF support are available for

Microsoft Windows, Linux, the Solaris OS, Apple

Mac OS X, and FreeBSD.

Open standard W3C XForms technology is

used for forms

The forms concept integrated into ODF is based on

the W3C XForms standard which is supported by

multiple applications and vendors.

Reuse of existing standards where possible

In order to make interoperability as simple as

possible, ODF reuses established standards such as

XHTML, SVG, XSL, SMIL, XLink, XForms,

MathML, and Dublin Core.

Well established
The first work for the ODF file format started as

early as 1999.

3. Evaluation of RTF

RTF makes the exchanging of documents among different word processors and

operating systems simple. For example, one can send an RTF file created in Microsoft

Word 2002 using Windows XP to someone who uses Word 97 in Windows 98,

WordPerfect 6.0 on Windows 3.1, StarOffice on a Linux system, or Word 5 on a

Macintosh system and all users will be able to open and read the file regardless of the

software version or operating system (Department of Translation Studies, University of

Tampere, 2011). RTF includes the entire text markup that is included in the original

document enabling it to print, and look, like the original document.

 51

RTF is very easy to use. It can be used in Microsoft Word, Corel WordPerfect and

other word processing programs. To use RTF, just choose the RTF when saving. There

are many reasons to use RTF: Widely Readable, Preserves Basic Formatting, Security

Advantages, Smaller File Size.

RTF can be read by majority of word processors and other type of related

programs. RTF can also be used by desktop database applications and email clients. It

works in any operating system.

RTF saves the font selection, font sizing, text styling and font coloring. It is often

used in the publishing world as a format for rough drafts (Senior Corps Tech Center,

2008). For instance, once editing of a document is completed, the RFT is imported into a

page layout program for final formatting which allows editors to focus on editing content

without the distraction of too much formatting (Senior Corps Tech Center, 2008).

RTF is a trustworthy format because it cannot contain any macros. Macros can be

used to transport viruses. One advantage that RTF files have over several newer word

processing formats is its inability to support macros which are a set of automated

instructions thus preventing malware being embedded in the file (Hogan, 2011). On the

other hand, RTF allows anyone to read data in the file making it not secure.

A RTF file does not require much memory because it does not contain numerous

macros or complex formatting information thus allowing uploading, downloading, and e-

mail transmission times to be quicker. Conversely, if the document contains embedded

graphics, audio files, etc., then an RTF version may be considerably larger than the DOC

version, as RTF would have to convert highly-complex graphics information into RTF

format, which would involve a considerable amount of coding instruction (Department of

Translation Studies, University of Tampere, 2011).

 52

C. SUMMARY OF FINDINGS

The MVC design pattern is a well-established and compelling approach for

document processing. Documents are separated into three elements. True MVC of

document processing involves separation. ODF and OOXML are more in concert with

MVC than RTF; and they both can be used to apply the MVC concept. Even though RTF

provides flexibility and portability, it only pertains to the formatting of a document (view

element of MVC). OOXML allows the file formats to be accessible through many of

applications. ODF is vendor neutral; customers can access ODF regardless of vendor.

Both ODF and OOXML also enforce separation.

 53

V. CONCLUSION

A. THESIS SUMMARY

This thesis presents the MVC architecture, describes its elements and explains and

how the elements work together. It then presents a use case analysis to capture the

requirements in the cloud documents collaboration, control and management in the cloud.

We presented a use case study to illustrate how MVC can be applied to cloud

documents. The study applies MVC by separating the controller of the document

(business logic) from the view and model of the document. This separation will give the

Facilities Management Department the ability to control and manage the content of the

document without affecting other elements of the document. We also presented another

use case to illustrate how OOXML can be used to support MVC by separating the view

of the document (images/logos) from the controller and model of the document allowing

all the images/logos of the document to be changed without affecting the controller and

the model of the document.

B. FUTURE WORK

To improve reusability and flexibility in processing and managing document

contents, the MVC design pattern should be used to divide the document structure and

processing into model, view and controller. MVC can be readily supported by document

standards such as OOXML and ODF. Although existing document processing software

already provides user capability to include business logic (in the form of macros and

hyperlinks), new MVC-aware software is needed to provide user with fine-grained

version and access control to the MVC elements. We need to review other document

standards to assess where they stand in their support for MVC. In particular, we need to

examine XForms, a new document technology that is based on the MVC approach. We

also need to do more research on new ways to embed business logic in documents and

how we can use them for the controller element.

 54

THIS PAGE INTENTIONALLY LEFT BLANK

 55

LIST OF REFERENCES

Apache Software Foundation. (2010). Batik SVG toolkit. Retrieved July 27, 2011, from
http://xmlgraphics.apache.org/batik/

Battlez. (2007, October 06). Model view controller. Retrieved March 22, 2011, from
http://www.phpwact.org/pattern/model_view_controller

Bin, W., Liwei, B., & Yong, Y. (2009). Study on the Information Service System of
Cooperative Marketing of Tobacco Industry Based on SaaS. Hefei, China:
International Forum on Information Technology and Applications.

Brown, M. (2009, March 19). The Workshare Blog Benefits of the RTF Document
Format. Retrieved July 15, 2011, from Workshare:
http://www.workshare.com/community/blogs/workshare/archive/2009/03/19/bene
fits-of-the-rtf-document-format.aspx

Cochran, M. (2005, December 12). Introduction to Model View Control (MVC) Pattern
using C#. Retrieved March 22, 2011, from http://www.c-
sharpcorner.com/uploadfile/rmcochran/mvc_intro12122005162329pm/mvc_intro.
aspx?articleid=448db537-f236-497d-a16b-46c5d1141e3f remove all

Department of Translation Studies, University of Tampere. (2011, March 03). Why
Should One Use RTF (Rich Text Format) Files? Retrieved July 2011, from
Digital Literacy and Academic Knowledge Management:
http://www.uta.fi/FAST/PK5/rtf.html

Ditch, W. (2007). XML-based office document standards. Bristol, UK: JISC

Drusinsky, D. (2011). MVC-based Content Management on the Cloud (technical report).
Naval Postgraduate School.

Edstorm, D. (2005). Retrieved July 15, 2011, from Sun Microsoft System:
http://xml.gov/presentations/sun/odf.pdf

Fowler, M. (2002). Transform View. In M. Fowler, Patterns of enterprise application
architecture (p. 361). Addison-Wesley Professional.

Fowler, M. (2006, July 18). GUI Architectures. Retrieved March 2011, 2011, from
http://martinfowler.com/eaaDev/uiArchs.html

Gérardin, O. (2009, March 18). Why Ext-GWT MVC is broken. Retrieved March 18,
2011, from http://blog.gerardin.info/archives/40

Hogan, B. (2011). What is RTF? Retrieved July 2011, from eHow:
http://www.ehow.com/facts_5591951_rtf_.html

 56

Indiana University. (2011, January 27). Knowledge Base. Retrieved July 15, 2011, from
University Information Technology Services: http://kb.iu.edu/data/adnl.html

Joomla. (2010). Create MVC-model-view-controller component for joomla 1.5 - Hello
World. Retrieved March 22, 2011, from
http://www.vojtechovsky.net/joomla/component-helloworld-2-create-tutorial-
guide-en.html

Kelly, S., & Mazyck, C. (2010). Cloud Computing in Support of Synchronized Disaster
Response Operations (master’s thesis). Naval Postgraduate School.

Kotek, B. (2002, 10 30). MVC design pattern brings about better organization and code
reuse. Retrieved June 10, 11, from TechRepublic:
http://www.techrepublic.com/article/mvc-design-pattern-brings-about-better-
organization-and-code-reuse/1049862

Madhva, S. K. (n.d.). Creating word document in office open xml format using jave:
openxmldeveloper.org

Mahugh. (2007). Open XML the markup explained. Redmond, WA:Microsoft.

Mell, P., & Tim, G. (2009, 10 07). The NSIT Definition of Cloud Computing. Retrieved
May 24, 2011, from www.au.af.mil/au/awc/awcgate/nist/cloud-def-v15.doc

Microsoft Corporation. (2005, June). Retrieved July 2011, from Microsoft:
(windowsconnected.com/media/p/2899/download.aspx).

Microsoft Corporation. (2011). Introduction to new file-name extensions. Retrieved July
2011, from Microsoft Office: http://office.microsoft.com/en-us/help/introduction-
to-new-file-name-extensions-HA010006935.aspx

Microsoft MSDN. (2011). Introduction. Retrieved July 15, 2011, from MSDN:
http://msdn.microsoft.com/en-us/library/aa140280(v=office.10).aspx

Model view controller (n.d.). Retrieved March 22, 2011, from a Wikipedia website on
MVC:
http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
update any in-text citation: (search term, n.d.). re-alpha this endtry.

MSDN. (n.d.). Model-View-Controller. Retrieved March 22, 2011, from
http://msdn.microsoft.com/en-us/library/ff649643.aspx

Ngo, T. (2011, June). Standard ECMA-376 Office Open XML File Formats. Retrieved
April 28, 2011, from Ecma International: http://www.ecma-
international.org/publications/standards/Ecma-376.htm

 57

O’Reilly & Associates, Inc. (2005). Chapter 1. The Open Document Format. Retrieved
July 15, 2011, from http://books.evc-cit.info/odbook/ch01.html

OASIS ODF Adoption TC. (2006, December 10). Retrieved July 15, 2011, from OASIS
Open: http://www.oasis-
open.org/committees/download.php/21450/oasis_odf_advantages_10dec2006.pdf

Pawson, R. (2004). Naked Objects. New York: Wiley.

Qiu, X. (2004). Building Desktop Applications with Web Services in a Message-based
MVC Paradigm. Electrical Engineering and Computer Science, paper 63.
http://surface.syr.edu/eecs/63

Sasine, J. M. (1995). Implementing the mdel-view-controller paradigmin ada 95. New

York, NY: ACM.

Senior Corps Tech Center. (2008). Retrieved July 2011, from Benefits of Rich Text
Format (RTF): http://www.page-house.com/clippings/benefitsOfRTF.html

TechTarget. (2008). model-view-controller. Retrieved March 22, 2011, from
http://whatis.techtarget.com/definition/0,,sid9_gci214607,00.html

Vugt, W. v. (2007). Open xml the markup explained. In W. v. Vugt, open x,l the markup
explained (pp. 1–123).

Walther, S. (2008, August 24). The Evolution of MVC. Retrieved March 22, 2011, from
http://stephenwalther.com/blog/archive/2008/08/24/the-evolution-of-mvc.aspx

Webworld, K. (n.d.). BAP Objects Design Patterns - Model View Controller MVC I.
Retrieved March 22, 2011, from http://allsapabap.blogspot.com/2009/02/abap-
objects-design-patterns-model-view_4191.html

White, E. (2009, Feb 13). Retrieved July 2011, from Seven Key Benefits of Open XML:
http://blogs.msdn.com/b/ericwhite/archive/2009/02/13/seven-key-benefits-of-
open-xml.aspx

WordIQ. (2010). Model-view-controller - definition. Retrieved March 22, 2011, from
WordIQ: http://www.wordiq.com/definition/Model-view-controller

Zhengquan, Z., & Chengjun, X. (2010). MVC model based on high-performance
computing operating audit system. Lanzhou ,Gansu: Second International
Conference on MultiMedia and Information Technology.

 58

THIS PAGE INTENTIONALLY LEFT BLANK

 59

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
Ft. Belvoir, Virginia

2. Dudley Knox Library
Naval Postgraduate School
Monterey, California

3. Dr. Doron Drusinsky
Department of Computer Science
Naval Postgraduate School
Monterey, California

4. Dr. Bret Michael
 Naval Postgraduate School
 Monterey, California

5. Dr. Man-Tak Shing

 Naval Postgraduate School
 Monterey, California

6. Dr. Thomas Otani

Department of Computer Science
Naval Postgraduate School
Monterey, California

7. Mr. John Shea

 Office of the DoD CIO
 Arlington, Virginia

